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ON THE EQUATIONS OF ELASTIC MATERIALS WITH
MICRO-STRUCTURE
R. D. MinNDLIN
Department of Civil Engincering, Columbia University, New York, N.Y.
Abstract—In the classical theory of elasticity it is possible to reduce the displacement equations of motion to

Lamé’s form by means of the Helmholtz resolution. In this paper the analogous reduction is effected for
equations, derived recently [1], of an isotropic. elastic material with micro-structure.

INTRODUCTION
IN THE classical theory of elasticity, the displacement-equation of motion,
(A+2WVV-u—pyVxVxu+f = pi, (H
is reduced, by means of the Helmholtz resolutions
u=Vp,+VxH,, V-H, =0, (2a)
f=Vp¥+VxH}, V-Hf=0, (2b)
to Lamé’s form:
(A+20V?0, + 0t = pdy, (3a)
uViH, +H* = pH,. (3b)

In this paper, the analogous reduction is effected for equations, derived recently [1],
of an isotropic, elastic material with micro-structure. The new equations have, in addition
to the displacement vector u, a second dependent variable: the micro-deformation
dyadic {. The variables u and ¥ are governed by the equations?

(U+2g, +b,)V2u+{(A+pu+2g,+2g,+b, +b3)VV-u
—(81 +b V(L) —(g2+b)V - Y —(g2 + by - V+1 = pit, (4a)
(a; +as)[IV -y - V+IVI )] +(a, +a, XV - YV +V§ - V)
+(a3+a,)VV Y+ a, VI ) +(ag +a ¥ - VV +a,,V
+a13V W+ 2, IV u+g,(Vu+uV) + b, I(V-u+1: )
+by(Va— ) +bs(uV — P )+ @ = Lp'd*y, (4b)

where Y is the conjugate of {, I is the idemfactor, ® is the body double force dyadic,

p' is the mass density of the micro-material, 4 is the half-length of the unit micro-cell and
a;, b, g; are material constants,

Whereas (1) is equivalent to three scalar equations, (4) are equivalent to twelve
scalar equations.

t See [1], equations (6.1) and (6.2).
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ALTERNATIVE FORM OF EQUATIONS

A complete dyadic, A, may be resolved into the sum of its symmetric part A® and
antisymmetric part A*:

A=AS+AY  AS=HA+ALD), A= HA-AQ.

The symmetric part may be resolved, further, into the sum of its deviator A®” and its
spherical part IAg:

A5 = ASP 1A, A5 = AS—111: A, Ag = i1:A
Thus,
A = ASP 1A+ A4 (5)
Necessary and sufficient conditions for A = 0 are
ASP =, Ag =0, At = 0. (6)

Upon resolving the dyadics W and @, in (4), in accordance with (5), and applying
(6) to the resulting equations, the following equations on u, Y52, 5 and Y are obtained:

ki V- u—k ,VyS2 —k sVihs—k, VXV xu—k; V- Y2+ = pid, (7a)
ki (Vay*P + k5 o(VV - YSP)SP — 2 5P + k, 5( VWY )P

+hos(VV - S (a1 + a3 [VAPP ~ HVV - 595 ] 4+ 5P = Jp'd o™, (7b)
k3 Voutky,VeowP Vb ky Vi — kg + 305 = p'd?s, (7¢)

k3 (V) +k3 (VY - W0 1k 5(VV - ) — 3k 0
+(a10—a;) [V = 2AVV - )]+ @4 = Lpdij, (7d)
where
ky, = A+2u+2g,+4g,+b, +b,+b,,
kyy = 2a,+as+ag+3a,0+2a,,+3a,,+a,,+4a,s,
ki3 = 6a,+2a,+a3+%a,+6as+ag+3a,0+2a,;+3a,3+a,4+ays
ky3 = k3, = 3a,+2a,+a3+3as+ag+2a,,+a 4 +ays,
k3, = ki3 = 3g,+2g8,+3b,+b,+ b,
kiy = kyy = 2g,+b,+b;,
ky, = ¥b,+by),
33 = 3(3b,+ b, +b3),
kiy = pu+2g,+b,,
kys = 2a,+a3+ag+2a,0+2ay; +2a;3+ a4 +ays,
ky; = —2a,+as+ag+2a,,—-2a,,—2a,3+a,,+ays,

kys =ksy = ay—ag+a —as,
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7‘31 =l_<13 = b, —bs,

ki, =k, = 2g,+b,y+bs,
ki, = Ab,+by),

l_"ss = Ab, —by).

ANALOGUES OF HELMHOLTZ RESOLUTION

To find a resolution of the dyadic Y (or ®) analogous to that of the vector u (or f)
in (2). first define

4y = —f r~ o dV,, (8)
| 4
where r (= \/{(x—&)*+(y—n)? +(z—{)*]) is the distance between a field point P(x, y, z)
and a source point Q(&, 1, (), Yo = W&, 1, {) and dV, = d¢ dn d{. Then
W= VA = W —Vx V.
Define
G=V-¥, A=-Vxy.

Then a first resolution is

Y =VG+VxA, VA =0 (9
Now, define
4nA” = —f r Ay dV,,
v
so that
A'=VA" =(A""V)WV-A"xVxV.
Define
G =A""V, A" = —A"xV.
Then
A=G'V+A"xV, A"V =0, VV-A” = 0. (10
Substituting (10) in (9), we find a second form:
Y =VG+Vx(G'V)+VxA”"xV, A”"-V=0, VV-A" = 0. (11)
Consider, now, the symmetric part of
VY =VG+GV+VxAxXV, (12)
where
G = 4G +VxG"), A =HA" + AY) = Ac (13)

and we note that, in view of the second and third parts of (11),
V:A-V=0 V¥V-A =0. (14)
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Further, define

Then

Define

Then

R. D. MiINDLIN
4nG" = ——J. r Gy d¥,.
v

G = VG" =VV-G"-VxVxG".
y=2V-G”, H,=-VxG"

G =1Vy+VxH, V-H,=0.

Upon substituting (15) in (12), we find

VS = Wy +2AVVXx)SH,+VxAxV,

V'Hg':o, AZAC- V'A.VZO‘ VZV'AZO,

where the symbol (VV x )3 is defined according to

(VV x)H = YV(V x H)-+(V x H)V].

The spherical part of y* is

s=HS = V-1 A)

and the deviator of Y® is

Y2 = §S — 1y,

= VVy+2AVVx)SH, +Vx A xV—1IV3(y—1: A),

= (VV)Py+2AVV x)SH, +(V x A x V),

where ()? designates the deviatoric part.
It is convenient to define

oy =32x+1:A), @y =x—1:A)

and the symmetric deviator

Then

I = (VxAx VY’ -{VV)2p, +(VV)Pop,.

U2 = T'+3VV),+2AVV x)H,, V-H,
Vs = VZ(Ps-

As for the antisymmetric part of {, we have, from (11),

where

Y4 = VF—FV+1Vx(A” —AZ) xV,

F=4G-VxG.

(15)

(16)

(17)

(18)

(19)
(20)

(21)
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Define
4nF = —J r 'FodV,
v
Then
F=VF =VV:-F-VxVxF.
Define
7y =V-F, H, = —-VxF.
Then
F=Vy+VxH,. V-H, =0 (22)
and, from (22) and (21),
Y = V(VxH3)—(VxH))V+ IV X (A" —AZ) x V, (23)
V-H; =0, V2V A" =0, A"V =0. (24)

Now, in view of (24), we have, from (23),

IxI:y* = 2V2H, + VY.
where
= —Ix1:VA”.
Then
Y? =Ix(jVY+V3H;), V-H,;=0. (25)
Assembling the results in (19), (20), (25), we have a special form of resolution of
suitable for the present purpose:
U e B
=T+ 3VV) 2, +2AVV x)SH, + V20, + I x (3VY + V?H,), (26a)
V-H, =0, V+'H; =0, =", 1:T=0

Similarly, we may express the body double force dyadic ® as
O = O +10+ @7, (26b)
where
@50 = T*+ {VV)Pp% + AVV x)HE, V- -H% =0,
Oy = V3l
@4 = [ x(3VY*+V?H¥), V-H% =0,

and @%. % H%, H% I'* Y* are defined in the same way as their counterparts in .
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EQUATIONS ON ¢, H, Y AND I'
Upon substituting (2) and (26) in (7), we find
VIVHky 101 —ki202— ki 303+ @F — pdi]
+Vx[V¥k, H, =k ,H.—k ;H)+H¥—pH,] = 0, (27a)
(VOP(ky @ +k22V7 0, — Ko 202 +k33V 203+ 303 —3p'd*p,]
+(VV x)5ky Hy + k5, VEH, ~ k5, H, + k53 V2H, + 2HE — 2p'd?H, ]

Hlayo+u, VT —(by+b )T +T* = 4p'd*l = 0, (27b)

VAky 0+ k3, V20, + k33 V23— k305 + 3% — p'd?5) = 0, (27¢)
Viky H, +k3,V2H, + k33 V2H; — kG H; + 2HE — 2p'd*H,)

+ V(o= )VEY =(hy = b)Y + Y* = 1p'd?Y] = 0. (27d)

Finally, as solutions of (27), we may take solutions of
ki Vi, =k Vi, —ki3Vis+ ot = pipy,
ka1 + k32 Vipy = ko290, +k23Vi0s + 303 = $p'd*,. (28)
k3101 +ka Vi, +ky3 Vi~ K305+ 3¢% = p'd®p,,
ki V*H, ~k,,V*H,—k;V?H; + Hf = pH,. 1

ky Hy +k,,ViH, — ko H, + k53 V2H, + 2HE = 2p'd?H,, (29)

ky H, 4k, V2H, + k33 VH, — k3 H, + 2HE = 3p'd*H,, J
(ao+a, DV T —(by + b)) +T% = Lp'd*T. (30)
(dio—dy VY —(b, —by)Y + Y* = 4p'd?Y. (31)

These are equations analogous to (3). The solution of (28)«31) for plane waves is identical
with the complete solution of (4), for plane waves, that was given in [1]. However, the
general completeness of (28)(31) has not been ascertained.
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Résumé—Dans la théorie de 'élasticité classique il est possible de réduire les équations du mouvement en
déplacements 4 la forme de Lamé en utilisant les résolutions de Helmholtz, L étude présente la réduction
analogue pour la théorie d’un corps clastique isotrope avec micro-structure, évolue par I'auteur [1].

AbeTpaxT-—I10 xnaccudeckod TEOpHH 3IACTHYHOCTH BO3IMOXHO CBECTH YPABHEHHA CMEUICHUS IUIS RBHXK-
eHus x dopme JlamMa 1IpH DOMOWIM pa3pewieHus [enpmronsiia.

B nacrofuei paGorte aHanoruyHoe npeobpa3osanne CAENAHO [N YPABHEHHH, HEJAABHO BHIBEAEHHBIX
[1], ¥30TPONHOTO 3IACTHYHOIC MAaTepbana OBNAAAIONIET0 MHKPO-CTPYKTYPOH.



