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ON THE EQUATIONS OF ELASTIC MATERIALS WITH
MICRO-STRUCTURE
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Abstract-In the classical theory of elasticity it is possible to reduce the displacement equations of motion 10

Lame's form by means of the Helmholtz resolution. In this paper the analogous reduction is effecled for
equations, derived recently [II, of an isotropic, elastic material with micro-structure.

INTRODUCTION

IN THE classical theory of elasticity, the displacement-equation of motion,

O. + 2Ji)VV • u - JiV x V x u + f = pu,

is reduced, by means of the Helmholtz resolutions

u VcP 1 + V x H b V . HI = 0,

f=Vcp!+VxH!, V'H!=O,

to Lame's form:

(1)

(2a)

(2b)

O.+2Ji)V2cpl +cp! = Pipl' (3a)
2 ••

JiV H t +Ht = pHI' (3b)

In this paper, the analogous reduction is effected for equations, derived recently [1],
of an isotropic, elastic material with micro-structure. The new equations have, in addition
to the displacement vector u, a second dependent variable: the micro-deformation
dyadic +. The variables u and +are governed by the equationst

(Ji+2g2+b2)V2U+(I,+Ji+2g1 +2g2 +bl +b3)VV' U

-(gt +bl)V(I : +) -(g2 +b2)V' +-(g2 +b 3)+· V+f = pli, (4a)

(at +as)[IV' +. V +VV(I: +)]+(a2+alt)(V' +V+ V+' V)

+(a3 + a(4)VV' + + a4IV2(I : +) +(as + at s)+' VV + alOV2+

+a13V2+C+ giIV' U+ g2(VU+ uV) +btl(V' u + I: +)
I 2"+b2(Vu-+)+b3(uV -+d+fI) '3P'd +, (4b)

where +c is the conjugate of +, I is the idemfactor, fI) is the body double force dyadic,
p' is the mass density of the micro-material, d is the half-length of the unit micro-cell and
ai' bi> gi are material constants.

Whereas (1) is equivalent to three scalar equations, (4) are equivalent to twelve
scalar equations.

t See [1), equations (6.1) and (6.2).
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ALTERNATIVE FORM OF EQUATIONS

A complete dyadic, A, may be resolved into the sum of its symmetric part AS and
antisymmetric part AA:

.1.= AS+AA, AS = !<A + Ad, AA = i{A-Ad.

The symmetric part may be resolved, further, into the sum of its deviator ASD and its
spherical part I~s:

AS = ASD+I~s, ASD
;= AS-tIl: A, ~s = tl: A.

Thus,

.1.= ASD+Ms+AA.

Necessary and sufficient conditions for A = 0 are

ASD = 0, ~s = 0, AA = O.

(5)

(6)

Upon resolving the dyadics \jI and ell, in (4), in accordance with (5), and applying
(6) to the resulting equations, the following equations on u, \jISD, t/Js and \jIA are obtained:

kllVV' u-k 12V' \jISD -k13vt/Js-k llV X V xu -k13v, \jIt +f = po, (7a)

k21(VU)SD + kdVV' \jIS~SD-ik22\j1SD + k23(VVt/JS)D

+k23(VV . \jIA)S +(alO + a13)[V 2\j1SD-~VV . \jIS~SD]+ ellSD
;= tp'd2\j1SD, (7b)

k31V'u+k32V'\jID'V+k33V2t/JS-k33t/JS+3<I>s = p'd2iiJs, (7c)

k31(VU)A +kdVV' \jIS~A+k33(VV . \jIA)A -tk33\j1A

+(alo - aI3)[V2\j1A - 2(VV . \jIA)A] + ellA = tp'd2\j1A, (7d)

where

k ll = A+2f.L+ 2g1 +4g2+b1+b2+b3,

k22 = 2a2+a3+as +~aIO+2all +~a13+a 14 +a15'

k33 = 6a l +2a2+a3+9a4+6a5+as+3alO+2a11 +3a13 +a I4 +a15 ,

k23 = k32 = 3al + 2a2+ a3 + 3a5 +as + 2a 11 + al4 + a15,

k31 = k 13 = 3g1 +2g2+3bl +b2+b3,

k12 = k21 = 2g2+b2+b3,

k22 = ~b2+b3),

k33 = 3(3b 1+b2+b3),

k11 = f.L+ 2g2 +b2,

k22 = 2a2+a3+as+2alO+2all + 2a13+ aI4+ a15,

k33 = -2a2+a3+as+2aIO-2al1-2a13+a14+a15,

k23 =k32 = a3-aS +a14 -a15'
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1.:3t = 1.: 13 = b2 -b3 ,

1.: 12 = 1.: 21 = 2g2+b2+b3 ,

1.:~2 = 2(b2+b3 ),

1.:33 = 2(b2- b3)·
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ANALOGUES OF HELMHOLTZ RESOLUTION

To find a resolution of the dyadic \jI (or «1») analogous to that of the vector u (or f)
in (2), first define

4n\jl' == -Iv r- I\j1Q dVQ, (8)

where r (= J[(X-~)2+(Y-I])2+(Z-V])is the distance between a field point P(x,Y,z)
and a source point Q(~, 1], (), \jIQ = \jI(~, 1], 0 and d VQ= d~ dl] d(. Then

\jI = V2\j1' = W, \jI' - V x V x \jI'.

Define

Then a first resolution is

A' == - V x \jI'.

Now, define

\jI = VG' + V x A', V· A' = 0. (9)

so that

Define

A' = V2A" = (A'" V)V-A" x V x V.

Then

G"==A"'V, Am == -A"xV.

A' = G"V+Am xV, Am·v = 0, (10)

Substituting (10) in (9), we find a second form:

\jI = VG'+V x(G"V)+V x Am XV, Am. V = 0,

Consider, now, the symmetric part of \jI:

\jIS = VG+GV+VxAxV,

where

(11)

(12)

G == !(G'+VxG'), A == !(Am + Ac)= Ac (13)

and we note that, in view of the second and third parts of (II),

V'A'V = 0, (14)
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Further. define

Then

Define

R. D. MINDLIN

G = VZG'" = VV· G'" - V XV x G"'.

Then

x == 2V· G"', Hz == -VxG"'.

<(J3 == l(x- 1 :A)

V'Hz = 0,

G = 1VX + V XHz, V . Hz = 0.

Upon substituting (15) in (12), we find

\lis = VVX+2(VVx)sHz+VxAxV,

V'Hz = 0, A = Ac, V'A'V = 0, VZV'A = 0,

where the symbol (VV x )s is defined according to

(VV x )sH == 1[V(V x H)+(V x H)V].

The spherical part of \lis is

t/Js == il :\115 = iVz(x-1 :A)

and the deviator of \lis is

\IISD == \lis -It/Js.

= VVX+2(VVx)sH z+VxAxV-iIVz(X-1 : A),

= (VV)DX+ 2(VV x )sHz+(V x A x V)D,

where ( )D designates the deviatoric part.
It is convenient to define

<(Jz == 1(2X+ 1 :A),

and the symmetric deviator

r == (V x A XV)D _1(VV)D<{JZ + (VV)D<{J3'

Then

\IISD = r +~VV)D<{JZ + 2(VV X)sHz,

t/Js = VZ<{J3'

As for the antisymmetric part of \II, we have, from (11),

\IIA = VF-FV+1VX(A"'-A(~)xV,

where

F == !(G'-VxG").

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Define

Then

F = V2F' = VV-F'-VxVxF'.

Define
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"/ == V-F',

Then

H 3 == -VxF'.

and, from (22) and (21),

(22)

Now, in view of (24), we have, from (23),

A"'-V = O.

(23)

(24)

where

Y == -I xl: VA"'.

Then

(25)

Assembling the results in (19), (20), (25), we have a special form of resolution of \jJ
suitable for the present purpose:

\jJ = \jJsD+l/Jsl+\jJA,

= r+~VV)DqJ2+2(VVx)sH2+IV2qJ3+lx(WY+V2H3)' (26a)

r = r e, I: r = o.

Similarly, we may express the body double force dyadic (J) as

(J) = (J)SD + l<I>s +(J)A,

where

CltSD = r*+~VV)DqJ!+2(VVx)sH!, V-H! = 0,

<1>5 = V 2qJ!.

(J)A = Ix(WY*+V2H~), V-H~ = 0,

(26b)

and qJ~. qJ~. H~. H~, r*. y* are defined in the same way as their counterparts in \jJ.
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EQUATIONS ON qJi' Hi' Y AND r
Upon substituting (2) and (26) in (7), we find

V[V2(k II qJI - k 12<fJ2 - k I JqJ3)+ qJi - pip d

+ V x [V2(k II H 1- k12H2 - "13H3)+ Hi - pHI] = O.

(VV)D[k21 qJ 1+ k22V 2qJ 2 k~2qJ2 + k 23V2qJ3 + ~qJi -1P'd2ip2]

+(VV X )S[k 21 H j + 7-: 22V2H2- 7-:~2H2 + 7-: 23V2H 3+ 2Hi -ip'd2H2 ]

+(£710+0j3)V2r-(b2+h3)r+f*-5P'd2r = 0,

V2(k31 qJI + kJ2V2qJ2 + k33V2(P J - k~3qJJ + 3qJ! - p'd2ip3) 0,
1 - -. 2 • 1·,' * l' 2"V (k3IHI+k32V H 2 +k33V H3-k33H3+2H3-Wd H3)

+V[(UjO-UL1)V2Y-(h2-h3)Y+Y*-h/([2Y] = O.

Finally, as solutions of (27). we may take solutions of

kIIV2qJl-k12V2qJ2-kI3V2qJ3+qJi = Pipl' )

k21 qJj +k22V2(P2·-k~2qJ2+k23V2<fJ3+~qJi = 1P'(Pip2'

k31 qJl +k32V 2qJ2 +k B V 2qJ3 -k~3qJ3 + 3qJ! = p'd2cp3'
-, - 2·2 ".

. k] ~V-H21-kl~~ H2-~13V2H 3 + H: _ :~I~.. l
~21Hl +~22V2H2-~22H22+k2~~ H 3+2H: =~P,d2~2' j
k3IHI+k.12V H2 +k33V H3-k33H3+2H3 - 3pd H 3,

({/10+ 0 u)V2r-(b2+h 3)r+r* = }p'd 2r.
(Ul0-U13)V2Y-(n2-bJ)Y+Y* = tp'd 2 y,

(27a)

(27b)

(27c)

(27d)

(28)

(29)

(30)

(31)

These are equations analogous to (3). The solution of(28H31) for plane waves is identical
with the complete solution of (4), for plane waves, that was given in [1]. However, the
general completeness of (28H 31) has not been ascertained,
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Resume---Dans la lheorie de l'elaslicite c1assique il est possible de reduire lcs equations du mouvement en
deplaccments it la forme de Lame en utilisant Ics resolutions de Helmholtz. L'etude presenle la reduction
analogue pour la theorie d'un corps elaslique isolrope avec micro-structure. evalue par l'auleur [I].

A6CTpaKT-no KJ1aCCH'IeCKOn TeopHH 3J1aCTH'IHOCTH B03MOJKHO CaecTR ypaBHeHRII CMemeHHlI .n;nll .n;BHJK­

eHHII K tPopMe JIaM3 npR nOMomR pa3peweHRlI reJIbMrOJIbua.

B HaCTOliwen pa60Te aHaJIOrR'iHOe npeo6pa30BaHHe c):\eJIaHO ):\JIIi ypasHeHHn, He):\aBHO BbIBe):\eHHbIX
[I], R30TPOilHOro :maCTH'IHOrO MaTepWlJIa 06JIa):\aIOmero MRKpO-CTpyKTypOn.


